Variable step-size LMS algorithm with a quotient form

نویسندگان

  • Shengkui Zhao
  • Zhihong Man
  • Suiyang Khoo
  • Hong Ren Wu
چکیده

An improved robust variable step-size least mean square (LMS) algorithm is developed in this paper. Unlike many existing approaches, we adjust the variable step-size using a quotient form of filtered versions of the quadratic error. The filtered estimates of the error are based on exponential windows, applying different decaying factors for the estimations in the numerator and denominator. The new algorithm, called more robust variable step-size (MRVSS), is able to reduce the sensitivity to the power of the measurement noise, and improve the steady-state performance for comparable transient behavior, with negligible increase in the computational cost. The mean convergence, the steady-state performance and the mean step-size behavior of the MRVSS algorithm are studied under a slow time-varying system model, which can be served as guidelines for the design of MRVSS algorithm in practical applications. Simulation results are demonstrated to corroborate the analytic results, and to compare MRVSS with the existing representative approaches. Superior properties of the MRVSS algorithm are indicated. & 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Wavelet Transform-Domain LMS Adaptive Filter Algorithm with Variable Step-Size

The wavelet transform-domain least-mean square (WTDLMS) algorithm uses the self-orthogonalizing technique to improve the convergence performance of LMS. In WTDLMS algorithm, the trade-off between the steady-state error and the convergence rate is obtained by the fixed step-size. In this paper, the WTDLMS adaptive algorithm with variable step-size (VSS) is established. The step-size in each subf...

متن کامل

A Unified Analysis Approach for LMS-based Variable Step-Size Algorithms

The least-mean-squares (LMS) algorithm is the most popular algorithm in adaptive filtering. Several variable step-size strategies have been suggested to improve the performance of the LMS algorithm. These strategies enhance the performance of the algorithm but a major drawback is the complexity in the theoretical analysis of the resultant algorithms. Researchers use several assumptions to find ...

متن کامل

Performance Analysis and Enhancements of Adaptive Algorithms and Their Applications

Adaptive filters that self-adjust their transfer functions according to optimizing algorithms are powerful adaptive systems with numerous applications in the fields of signal processing, communications, radar, sonar, seismology, navigation systems and biomedical engineering. An adaptive signal processing algorithm, e.g., the least mean squares (LMS) algorithm and the recursive least square (RLS...

متن کامل

Non Stationary Noise Removal from Speech Signals using Variable Step Size Strategy

The aim of this paper is to implement various adaptive noise cancellers (ANC) for speech enhancement based on gradient descent approach, namely the least-mean square (LMS) algorithm and then enhanced to variable step size strategy. In practical application of the LMS algorithm, a key parameter is the step size. As is well known, if the step size is large, the convergence rate of the LMS algorit...

متن کامل

An Improved Variable Step LMS Algorithm

In this paper we discuss how to improve the behavior of the Variable Step-Size LMS (VSSLMS) algorithm that was proposed in [6]. In many practical applications from the field of system identification, an estimation of the noise variance is available. Therefore we introduce a modified VS-LMS algorithm that exploits this informations in order to provide a faster convergence speed. In this paper th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 89  شماره 

صفحات  -

تاریخ انتشار 2009